Functional and phylogenetic dimensions are more important than the taxonomic dimension for capturing variation in stream fish communities

Published in Austral Ecology - Top downloaded article (2018-2019)

By Nakamura G., Vicentin W. and Súarez Y.R. in Fish ecology

July 1, 2018

Abstract

Biodiversity is inherently multidimensional in nature, differences in evolutionary history, attributes of species, taxonomic composition constitutes a small fraction of whole variation present in this multidimensional space. Despite its multidimensional characteristic, biodiversity has been traditionally measured by assessing its dimensions separately through metrics of diversity. However, assessing multiple dimensions in a common framework opens the possibility of answering interesting questions that, until now, are poorly understood, such as: What dimensions capture most of the variation present in biodiversity among communities? We assess this question by extending the framework of Importance Values (IVs) to three dimensions of variation in biodiversity, functional, taxonomic and phylogenetic, and evaluate which of these captures the most variation in biodiversity space. To address this question we used data from stream fish communities of the Ivinhema River Basin in Brazil. We found that functional and phylogenetic dimensions are more important than the taxonomic dimension (represented by richness) in capturing variation in the biodiversity space formed by these three dimensions together. Furthermore, the IVs of these three dimensions were similar along an altitudinal gradient, indicating similar contributions by a given dimension in different environmental conditions. We highlight the importance of adopting a multidimensional approach when describing biodiversity, since richness (the proxy for taxonomic dimension), despite being the most commonly used, is an incomplete surrogate to capture the variation present in the biodiversity space of stream fish communities.

Read more ->

Posted on:
July 1, 2018
Length:
2 minute read, 233 words
Categories:
Fish ecology
See Also: